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ABSTRACT 

The allocation of nearly 30% of the Navy’s budget to personnel costs, and 

the importance of manning fleet requirements to maintain operational readiness 

create a critical need for the Navy to effectively manage the size of the force. The 

Navy’s personnel planners use the Officer Strategic Analysis Model (OSAM) to 

project officer end-strength based on policies, plans, and historical loss rates. 

The application of data farming to this model allows for investigation of different 

scenarios that can provide insight into both the behavior of the model and the 

behavior of the officer corps under various conditions. This study uses Design of 

Experiments (DOE) techniques to develop and implement an experimental 

design that determines the degree of stochastic variation in OSAM and explores 

the effect of a three-year period of poor retention of Unrestricted Line (URL) 

officers in paygrades O3 through O6. Analysis of results across multiple 

replications of a single design point indicates that OSAM produces very little 

stochastic variation. Regression modeling of the results allows planners to 

accurately and precisely predict the effect of this poor retention scenario on 

specific groups. This predictive capability provides the opportunity for proactive 

approaches to solving potential retention problems. 
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EXECUTIVE SUMMARY 

The Navy’s readiness and fiscal health depend on precise management of 

the size of the force. Required by law to keep end strength within congressionally 

mandated numbers, the Navy’s manpower planners rely on models and 

algorithms to make predictions of end-strength. The Officer Strategic Analysis 

Model (OSAM) makes end-strength projections for the Navy’s officer corps, 

incorporating historical loss rates and various guidelines and policies. This study 

explores the use of OSAM to investigate a potential retention crisis among 

Unrestricted Line (URL) officers. Applying data farming techniques to OSAM, we 

simulate a set of poor retention scenarios to gain insight into how the model 

performs, and how the URL community responds. The results demonstrate 

methods to expand OSAM’s use and build projection models to help the Navy 

confront future retention challenges. 

Running under Microsoft Access, OSAM allows the user to project officer 

inventory for one to seven years, by setting parameters for accessions, losses, 

transfers between communities, and promotions of officers. It is a time-stepped 

agent-based simulation that takes as input the inventory of officers at the start of 

the fiscal year, and according to the user-set parameters, produces end-strength 

values for all officer groups for the end of each fiscal year in the simulation. 

Losses are typically programmed to follow historical loss rates from a period of 

the user’s choosing, with additional capability to introduce forced losses for 

specific groups of officers. Although the model has capacity for stochastic 

variation, current practice relies on single “deterministic” runs. 

Data farming refers to the process of creating a data set representative of 

a large-scale problem by applying Design of Experiments (DOE) methods and 

using high-performance computing. The wide range of possible scenarios that a 

poor retention scenario could entail for various officers groups make it infeasible 

to study the problem in a comprehensive fashion using the existing OSAM 

platform. With support from the Simulation Experiments & Efficient Designs 
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(SEED) Center for Data Farming at the Naval Postgraduate School (NPS), we 

create programs to automate OSAM, giving manpower analysts the ability to run 

complex experimental designs. The experiment in this study simulates a three-

year period of poor retention by introducing forced losses for three consecutive 

years for the four largest URL designators in paygrades O3 to O6. End-strengths 

for an additional three years beyond the poor retention period are also included 

in the data. The Nearly Orthogonal Latin Hypercube (NOLH) design used for the 

experiment varies the losses in each officer category to efficiently achieve 

maximum coverage of the possible range of values. Each design point receives 

ten replications to reveal any stochastic variation in the model. 

The results of the simulation runs show that although OSAM in its current 

form demonstrates very little stochastic variation, changing the inputs in a 

systematic fashion can yield a wide range of results. The end-strength of the 

URL communities examined in this study vary significantly in the years following 

the poor retention period, but do so in a consistent manner that reveals certain 

trends and patterns. Although all officer groups suffer significant losses, end- 

strength for officers in paygrade O3 tend to rebound quickly once the additional 

forced losses stop. End-strengths for officers in paygrades O4 through O6, 

however, fail to increase towards their original sizes.   

The complexity of the results makes it difficult to broadly characterize the 

relationship between different categories of forced losses and end-strength. 

Once the system is analyzed in terms of specific groups of officers, however, 

linear models allow planners to accurately and precisely determine the effect of 

various poor retention scenarios. The validity of the models relies on 

assumptions regarding the timing and scope of the poor retention period. These 

assumptions may not hold true in all cases, making further exploration of different 

scenarios an important area for follow-up research. Using the software tools 

produced in this study, planners now have the ability to design experiments that 

can examine these possibilities.  
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I. INTRODUCTION 

A. BACKGROUND 

Given the significant and growing proportion of Department of Defense 

(DOD) resources consumed by personnel costs and the direct effect on 

readiness of unmanned requirements, accurate and precise knowledge of end-

strength is critical to the U.S. Navy’s manpower management. For Fiscal Year 

2014, the Navy had an estimated end-strength of 323,600 (including 53,400 

officers), at a cost of $45.4 billion out of a total budget of $155.8 billion 

(Department of the Navy, 2013). End-strength predictions are continuously 

updated throughout the course of the fiscal year and play a central role in the 

Navy’s manpower planning. Planners rely on these projections to achieve their 

objectives in the areas of budgeting, resource allocation, operational readiness, 

and occupational community management.  

By law, the Navy’s total number of active-duty personnel at the end of the 

fiscal year must conform to the end-strength-guidelines set by Congress. The 

allowable margin of error is small. The Navy must remain within 3 percent above 

and .5 percent below authorized end-strength (Department of the Navy, 2015). A 

highly developed set of policies allows the Navy to regulate personnel numbers 

closely; however, external factors and individual behaviors insert uncertainty into 

the process.  

Within the staff of the Chief of Naval Personnel (CNP) at Navy 

headquarters (OPNAV N1), the Strategic Actions Group (SAG) uses the Officer 

Strategic Analysis Model (OSAM) as a modeling tool to develop end-strength 

forecasts for the Navy’s officer corps. OSAM is a time-stepped agent-based 

simulation that takes as inputs the inventory of officers at the start of the fiscal 

year, and based on the inputs from various personnel plans, projects the end-

strength for the end of the fiscal year and beyond for up to seven years. The 

results provide a snapshot of officer end-strength by designator, paygrade, years 
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of commissioned service, and total years of service. OSAM–generated reports 

incorporate mandated end-strength constraints in the form of Officer 

Programmed Authorizations (OPA) that represent desired targets for projected 

inventory. Due to OSAM’s comprehensive coverage of officer inventory and 

ability to fine-tune adjustments to simulation inputs, planners may use OSAM to 

simulate a variety of scenarios as a means of investigating the effects of 

proposed policy changes. Although the model has the capacity for stochastic 

variation, current practice relies on single deterministic runs.  

B. PROBLEM STATEMENT 

Beyond its contributions to end-strength planning, OSAM can aid in the 

development of policies that will help the Navy deal with the challenges of a 

period of low retention of its officers. Given the uncertainty in future economic 

conditions and unpredictable aspects of human behavior, the Navy remains 

vulnerable to scenarios in which unexpectedly large numbers of officers decide to 

leave the service. Recent surveys and studies have explored some current 

issues affecting retention and indicated a potential for acute problems 

(Snodgrass & Kohlmann, 2014). The CNP has publicly brought the issue into the 

spotlight and highlighted it as an organizational priority (Moran, 2014). Questions 

remain on what a period of poor retention might look like in terms of both 

immediate and long-term effects on officer inventory. Due to the diversity of the 

Navy’s officer corps, the complexity of the issue can quickly grow beyond the 

scope of existing analytical methods. With dozens of discrete groupings of 

designator, paygrade, years of service, and additional attributes, the officer corps 

contains numerous potential avenues of investigation with respect to losses and 

retention. OSAM’s complexity presents a challenge in exploring large-scale 

problems and thus provides an opportunity for using Design of Experiment (DOE) 

techniques to make tackling retention issues feasible and more efficient. For a 

topic such as retention that tends to focus on qualitative factors, OSAM and data 

farming offer analytical tools to explore the possibilities in a rigorous fashion. 

Data farming incorporates “simulation modeling, high-performance computing, 
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experimental design, and analysis to examine questions of interest with large 

possibility spaces,” making retention analysis through end-strength projection an 

appropriate application (Horne & Meyer, 2010, p. 1). 

C. THESIS PURPOSE 

This thesis seeks to provide a quantitative approach to understanding the 

effect of poor retention on the Navy’s officer corps by using data farming to run a 

large set of simulations representing the widest possible range of selected input 

parameters. By developing a robust and efficient experiment design, we gain an 

understanding of the limits of OSAM’s performance. From the results, we gain 

insight into the limits of officer retention behaviors. Metamodeling provides a 

framework for interpreting those results. Analysis of the results of a broad survey 

of scenarios can indicate what factors have the greatest impact in determining 

the end-strength of critical communities.  

D. RESEARCH QUESTIONS 

Applying the capabilities and framework of OSAM to the retention issue, 

the scope of an experimental study can encompass any number of specific 

officer communities. In this study, Unrestricted Line (URL) officers constitute the 

group of interest, further limited to officers in paygrades O3 through O6. This 

group provides the advantages of (1) forming one competitive category for 

promotion purposes, thus establishing relationships between end-strength for 

different designators, (2) providing a large data set in which patterns may more 

readily be identified, and (3) having an explicit connection to readiness as URL 

officers represent the Navy’s organizational front line.  

Ultimately, the intent of this study is to examine how the officer corps 

responds to a period of low retention. Within this context, the following questions 

guide the experiment design and analysis of the harvested data:  
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1. Under what conditions do officer communities experience retention 
problems? 

2. What is the impact of a sustained period of poor retention? 

3. How much does the response vary?  

Insights gained from answering these research questions can inform the 

strategies and policies that the Navy may implement in response to a retention 

crisis. 

E. METHODOLOGY 

This thesis applies data farming techniques to OSAM and uses SEED 

(Simulation Experiment & Efficient Designs) Center high-performance computers 

to run the designed experiment. The SEED Center for Data Farming is an 

organization within the Naval Postgraduate School that promotes research and 

advancement of simulation analysis, particularly for defense applications 

(https://harvest.nps.edu). Initial preparations focus on identifying the factors 

within the model that have the greatest potential for affecting the response. With 

URL officer end-strength as the response for this study, numbers of forced 

losses, representing additional attrition, were chosen as the factors to be varied 

in the experiment. The choice of factors helps guide the decision on the type of 

design. The number of factors and their ranges of values, along with 

consideration for the simulation run-time and available computing resources, 

determine the design dimensions. The implementation of the experiment requires 

adapting OSAM to run on a computing cluster, including translation of the design 

into input plans for initializing the simulation. Output of the model results requires 

further modification to allow consolidation of the results from multiple runs. The 

analytical portion of this study dovetails from data farming techniques into 

statistical methods. After exploring relationships between factors and developing 

an overview of the response surface, metamodeling is used to build a 

comprehensive understanding of the retention issue and answer the research 

questions. 
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F. BENEFITS OF RESEARCH 

Through both preparation and execution of the experiments, this study can 

assist Navy manpower planning by enhancing the capabilities of OSAM and 

providing quantitative data to add to policy discussions regarding officer 

retention. The development of the OSAMFarmer and OSAMRunner tools used to 

produce and run designed experiments give planners the ability to run more 

comprehensive sets of scenarios, even without access to cluster computing. 

Through the experiments conducted in this study and potential future research, 

OSAM users will have the ability to test and evaluate the model’s capabilities and 

limitations.  

G. LITERATURE REVIEW 

Proper management of manpower resources is a primary concern of any 

organization and has prompted development of numerous models. Typically, the 

scope of these models goes beyond end-strength projection and into resource 

optimization. Although the end-strength numbers are themselves essential 

planning inputs, the ultimate goal is to fully and efficiently allocate personnel to 

manpower requirements. An overview of military manpower models reveals a 

wide range of purposes, designs, and uses.  

1. Department of Defense Manpower Models 

Modeling such a complicated phenomenon as human behaviors presents 

many challenges even in the context of military personnel systems with its 

extensive set of rules that provide a strong measure of control over these 

behaviors. The lack of understanding of relationships between variables and 

observed attributes has resulted in varying approaches (Schank, Harrell, & Thie, 

1997). Consequently, a diverse assortment of models can be found across DOD 

agencies, varying in purpose, scope, methodology, and scale. A common feature 

in many of these models, however, is the primary importance of strength 

management. Whether for models designed to track retention, recruiting, training, 

or skill utilization, end-strength is usually a key input, and the results of these 
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models often influence the design and implementation of models focused more 

purely on inventory projection (Schank, Harrell, & Thie, 1997). 

2. Modeling Methods 

OSAM’s design reflects decisions that do not necessarily represent a 

consensus or unified convention for manpower models. A fundamental split of 

strength management model types occurs between aggregate and disaggregate 

models. Aggregate models simply calculate the total end-strength without regard 

to attributes of the individuals flowing through the system. The model essentially 

boils down to the equation: 

EndStrength (or FutureStrength) = CurrentStrength + Gains – Losses 

Disaggregate models, on the other hand, simulate the movement of personnel 

based on individual characteristics such as occupational specialty and length of 

service. Conceptually, the basic equation used for aggregate models governs the 

simulation for disaggregate models as well, but the calculations are made 

iteratively through the inventory of personnel groups. These models quickly 

become complex and thus difficult to implement with limited computing 

resources, but provide a much higher resolution picture of the state of the force 

(Schank, Harrell, & Thie, 1997). Since its entities are defined by multiple 

attributes, most significantly designator and paygrade, OSAM is an example of a 

disaggregated model.  

DOD manpower models further differ in the mechanisms behind their 

simulations with differences representing conscious design decisions. Modelers 

have choices with respect to several key aspects of the design based on the 

following factors identified by Schank et al.: 

a. Dynamic versus Steady-State. OSAM is an example of a 
dynamic model since it projects end-strength from year to year, 
using the results from the previous year as inputs for the projection 
of the next year, which may have its own set of conditions. A 
steady-state model would assume that the conditions for the 
simulation remain the same for each year and needs to only 
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produce a single set of results for the end-point of the simulation 
period. 

b. Group versus Entity. Group models place individuals with the 
same attributes in a single category ensuring the model treats them 
identically. Entity models, such as OSAM, maintain the distinctions 
between individuals and treat them separately. 

c. Deterministic versus Stochastic. Deterministic models have no 
random effects and produce the same output for a specific input. 
Stochastic models incorporate randomness and can produce 
varying distributions of results for the same input. Although OSAM 
has the capacity for stochastic simulation, current practice hard- 
codes the random seeds within the model, making it a de-facto 
deterministic model. Measures such as confidence intervals on a 
mean provide an indication of how much an outcome may vary. 
Furthermore, deterministic models could be misleading in some 
cases. Deterministic models most likely do not give the same 
average outcome as an equivalent stochastic model (Lucas, 2000). 

d. Historic versus Econometrically Adjusted. Loss rates have 
significant impact on end-strength, so accurate end-strength 
predictions depend greatly on an accurate determination of future 
loss rates. On the premise that past behaviors are reasonably 
accurate predictors of future behaviors, historical loss rates may be 
used for future year projections without regard to particular events, 
economic factors, or policies that may have affected past rates. 
Econometrically adjusted rates incorporate detailed analysis of 
economic factors, such as unemployment and the effects they 
would have on personnel deciding whether or not to leave the 
service. OSAM uses historical loss rates; however, econometrically 
adjusted rates developed through a separate process outside the 
model could easily be incorporated. (Schank, Harrell, & Thie, 1997, 
pp. 20–23). 

The list of design choices above is not exhaustive and additional 

variations for both large- and small-scale adjustments could lead to an even 

greater divergence of models. Although two models may have the same purpose, 

differences in design choices could be responsible for differences in results. 

Understanding OSAM’s design in the context of these choices may help explain 

patterns observed in the results. 
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3. Optimization Applications 

Inventory projection models often serve as a prerequisite to further 

applications in manpower planning. Organizations not only want to know the 

numbers of personnel they will retain, but also what skill sets these personnel will 

have and how the workforce would compare to labor requirements. For the Navy, 

the inventory must not only stay within end-strength limits, but must also provide 

a balanced supply for fleet manpower requirements. Shortfalls in inventory can 

negatively affect readiness while overages can create budget problems. These 

types of constraints provide a suitable opportunity to apply optimization 

techniques. Clark’s (2009) study used linear optimization to develop the 

Requirements-Driven Cost-Based Manpower Optimization (RCMOP) model that 

projects future officer inventory, with the objective of minimizing unmet 

requirements, subject to budget constraints. Optimization models offer useful 

guidance in developing goals for future plans, but changes in behaviors could 

detract from the projections’ validity. Although OSAM does not provide a 

roadmap for planning force structures, its projections are grounded in reality and 

therefore provide a robust guideline for making force-planning decisions. 

4. Data Farming Applications 

Published literature contains a great volume of information on the design 

and implementation of military manpower models, but discussion on the 

application of data farming to these models remains limited. Previous Operations 

Research theses by Sibley (2012) and Erdman (2010) provide two examples of 

applying DOE methodology to end-strength projection models.  

This thesis continues the research begun by Sibley in the application of 

data farming to OSAM. Sibley’s study examined whether loss rates for officers 

who laterally transfer differed significantly and sought to determine a reasonable 

range of loss rates for accurate projections (Sibley, 2012). Using a previous 

version of OSAM, Sibley designed an experiment that varied lateral transfer rates 

and loss rates via adjustment factors built into the model. The scope of the study 
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was limited to two officer communities: Surface Warfare Officers (SWO) and 

Human Resources (HR) Officers. The study’s methodology could apply to a 

different or larger set of communities. The flexibility in OSAM’s design allowed 

Sibley to introduce a new designator representing SWOs prevented from laterally 

transferring to another community. These officers tend to leave the service at 

higher rate; thus, incorporating higher loss rates in the simulation may improve 

accuracy. Even though the experiment included less than 10 percent of the total 

officer inventory, the design still required 90 factors: loss rates for each paygrade 

(O1–O6) for each of the three designators, and for each of the five projection 

years. Data farming enabled an experiment design that could efficiently and 

feasibly explore such a large-dimensioned space. The results of the study 

demonstrated the robustness of the model. Sibley concluded that varying loss 

rates separately for denied lateral transfer applicants did not significantly change 

the projections. Experimental results did suggest, however, that varying loss 

rates year to year in the simulation results in more accurate projections (Sibley, 

2012). 

A U.S. Army inventory projection model, the Enlisted Specialty (ES) 

model, has also been the subject of data farming application. The ES model 

takes into account the paygrades, occupational specialties, and years of service 

of enlisted soldiers, and the authorized positions available. Using historical data, 

the model projects future inventory of the enlisted force and produces an 

optimized distribution that seeks to minimize the difference between inventory 

and authorization. Erdman’s application of data farming focused on fine-tuning 

the optimization aspect. The design varied the objective function coefficients in 

the optimization model to ensure the minimization did in fact produce the optimal 

result (Erdman, 2010).  

Concurrent with this study, an additional thesis applies data farming to 

OSAM to examine the effects of changes to the Navy’s Probationary Officer 

Continuation and Redesignation (POCR) policy (Borozny, 2015). Instead of 

varying forced losses to simulate poor retention as done in this study, Borozny’s 
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thesis varies numbers of junior officers released from active duty under POCR 

authority, and other factors, to investigate potential solutions to the Navy’s over-

execution of end-strength authorizations (Borozny, 2015). 

5. Retention Models  

Military retention models typically focus on econometric and demographic 

factors. Using historical data sets and surveys, researchers use regression 

models to identify predictive factors for retaining personnel. The majority of 

retention models cover only enlisted service members since the re-enlistment 

decision point provides a useful mechanism for tracking the effect of economics 

and policies on behavior (Weiss et al., 2002). Thus, inventory projection models 

themselves have not played a major role in retention research. In this respect, 

this study offers a proof-of-concept approach to try to model retention behaviors 

by applying data farming to an inventory projection model. Although OSAM does 

not have the advantage of having empirical data to support its results, the model 

is well grounded in real-world data with historical loss rates, actual inventories, 

and accurate representation of policies within the simulation. 
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II. MODEL 

This chapter provides additional background on OSAM, including a 

description of its development, architecture, and explanation of the model’s 

design and methodology. OSAM is a self-contained application for design, 

running, and analysis of simulations. For this study, the experimental design and 

results analysis portions use external programs, and while all simulations run 

exclusively within OSAM, modifications are made to make the program 

compatible with cluster computing. 

A. DEVELOPMENT 

OSAM was developed in 2007 by LMI, a government-consulting group, for 

N1 SAG’s predecessor, N14 (Manpower, Personnel, Training and Education 

Catalog, 2015). Although OSAM has not formally undergone the DOD’s 

Verification, Validation, and Accreditation process (VV&A), development of the 

model included accuracy testing. The model’s continued use and upgrades 

confirm its value to officer strength management along with other simulation tools 

that are used by planners and officer community managers. 

The original version of OSAM was written as a Microsoft Visual FoxPro 

executable application. Policies that limit access to software used on government 

computers resulted in OSAM residing on a stand-alone computer. Inputs to the 

simulation resided in 60 separate database files that were edited individually, 

making modification of these inputs a tedious process. Additionally, the user bore 

responsibility for documenting the changes. Preparation time for a single 

simulation typically ran 15 to 20 minutes (Sibley, 2012).  

B. SOFTWARE ARCHITECTURE 

The latest version of OSAM runs on Microsoft Access. Contractors from 

SAG Corporation translated the code into Visual Basic for Applications (VBA), 

bringing several benefits. Chiefly, OSAM may now run on government 
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computers, greatly expanding access to Navy manpower planners and thus 

encouraging its use and further development. The separate databases now have 

been merged a single database with separate tables organized in a relational 

structure. Changes to inputs and data no longer require direct editing of the 

tables for most types of simulations.  

C. MODEL DESIGN 

As an inventory projection model, OSAM follows the fundamental equation 

of end-strength being equal to beginning strength minus losses plus gains. The 

flow of this calculation is summarized in Figure 1. OSAM takes the beginning 

inventory and during the simulation, according to the model settings, determines 

how many officers to subtract based on losses, how many offices to add based 

on accessions, and how many officers to promote and transfer. The output at the 

end of the simulation is the end-of-fiscal-year inventory. If the simulation is set to 

continue, the end-of-fiscal-year inventory becomes the starting point for the next 

time step. Since OSAM is a disaggregate model, this process applies to all the 

communities within the officer corps. The multidimensional characteristics of 

each officer entity means OSAM must also keep track of years of service, 

promotions, and lateral transfers. Longevity increases to an officer’s years of 

commissioned service and total years of service occur automatically. Promotions 

and lateral transfers occur according to specific plans determined by user input. 

Losses, accessions, promotions, and transfers comprise the entirety of events 

that affect the size and makeup of the inventory. 
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 Diagram of OSAM model flow. Figure 1. 

 

 

D. REGULATORY CONSTRAINTS 

Another dimension of complexity to the model arises out of the numerous 

laws, rules, and policies that govern Navy officer management. The algorithms 

that determine the movement of personnel through the simulation must follow 

these guidelines. The Defense Officer Personnel Management Act of 1980 

(DOPMA) sets the primary controls on how many officers may promote and 

when, and what level of opportunity they should have to advance. Additional laws 

found in Chapters 33 and 33A of Title 10 of the U.S. Code provide guidance on 

appointment and separation of officers. (Defense Officer Personnel Management 

Act of 1980, 2012). 

Within the DOPMA and Title 10 framework, the Navy internally develops 

policies to manage officer end-strength and ensure fleet manpower requirements 

are met. The division of the officer corps into different designators allows for 

career specialization. Community management, including the lateral transfer of 

officers between designators, ensures that the officer corps remains healthy and 

balanced, and that each community is optimally manned. The accession, 



 14

promotion, and transfer plans that serve as inputs to OSAM must follow these 

rules and regulations. Losses occur for both policy and natural reasons, which 

results in OSAM using a different approach for handling losses than other inputs. 

OSAM separates these types of losses to maintain a clearer picture of how 

different losses ultimately affect end-strength. 

E. MODEL ALGORITHM 

The algorithms that govern OSAM are best understood as in terms of sets. 

Although the data reside in a multiple tables within a database, OSAM processes 

the inputs by building sets of data. This section provides a detailed description of 

the portions of the model relevant to the experiment, borrowing from OSAM’s 

technical documentation (Mundy, 2014). More in-depth coverage of other 

aspects of the model can be found in the documentation as well. 

1. Losses 

The treatment of losses is the most complicated aspect of the model and it 

has undergone significant revision since the original version. The current method 

for calculating losses represents the third major change to the procedure. Under 

this method, losses fall into three categories: (1) Natural, (2) Force-Outs, and (3) 

User-Added.  

a. Natural Losses 

Natural losses include all losses that occur due the application of historical 

loss rates to the beginning year inventory. They are represented by the equation: 

 

where Lossesproj(g,d) is the projected number of losses in paygrade g and 

designator d, LossRate(g,d) is the applied loss rate, and InvBOY(g,d) is the 

inventory at the beginning of the projection year. Natural losses make use of 

historical loss rates. OSAM calculates these rates in a straightforward manner by 

dividing historic losses in a year by the beginning inventory from that year. This 
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calculation is repeated for all paygrades, designators, and years of service, 

giving each officer grouping its own rate. Although OSAM is not an econometric 

model in the sense of the user having the ability to directly adjust the model 

settings to account for economic conditions, users can accomplish this purpose 

by changing the historic loss counts used to calculate rates. Separate 

econometric models, such as the Navy Officer Personnel Planning System 

(NOPPS) Forecasting Model (NFM) can provide estimates of loss counts that 

feed into the OSAM loss rate calculation (Mundy, 2014). 

When a user desires to alter loss rates, the changes are typically not 

made directly to the historical loss rates, but rather are made by applying loss 

adjustment factors. The default setting for a simulation has all loss adjustment 

factors set to one, meaning no changes to historical rates. OSAM applies any 

changes by multiplying historical loss rates by the adjustment factors. Factors 

greater than one increase losses and factors less than one decrease losses. 

b. Force-Outs 

Force-Outs refer to losses that occur due to Navy policies such as failure 

of selection for promotion and mandatory retirement due to age. OSAM 

implements Force-Out losses by determining a pool of eligible officers, and 

applying a force-out factor to remove a certain proportion from the inventory. 

Eligible officers are identified using a conditional statement:  

 

The conditional statement reflects current policy that forces officers to retire if 

they are in paygrades O4 and above and have reached the high-year tenure 

mark, or if they are in a lower paygrade and have reached the maximum 

allowable years of service (Mundy, 2014). 

c. User-Added 

The User-Added losses category consists of the additional losses 

programmed by the user for specific officer groups using OSAM’s force-shaping 
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input tool. The user selects which fiscal year, designator or community, grade, 

and year group will receive additional losses in addition to losses incurred due to 

historical losses and Force-Outs. OSAM allocates the losses using a pseudo-

random process.  

F. INPUT SETTINGS 

The user runs simulations in OSAM by selecting desired settings for the 

adjustable inputs. These inputs correspond to the categories of changes that 

affect officer inventory. OSAM’s scenario guides the user through the process.  

1. Interface 

The Graphical User Interfaces (GUI) implemented in the latest version of 

OSAM, version 3.1.4, represent another key upgrade that has improved its 

usability. Although the code and databases reside in Access, the user typically 

does not need to edit these components directly. A menu, labeled as Scenario 

Editor and displayed in Figure 2, guides the user through the building, editing, 

saving, and running of a simulation.  

With the Scenario Editor, the user builds and edits the parameters of the 

simulation. Setting of the inputs occurs via selection of various plans from the 

Parameters tab, or selection of specific methodologies from the individual input 

category tabs. Once the settings are finalized, the scenario is saved and the 

program creates an initialization file containing the scenario parameters.  
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 Screenshot of OSAM Scenario Editor.  Figure 2. 

 

 

2. Inputs 

From the basic input categories of any inventory projection model, OSAM 

has expanded the selection to account for the detailed tracking of different officer 

groups, and the ability to change the scenario settings to reflect various policy 

changes. Figure 3 shows an overview of the model inputs with the primary 

categories in the center and the specific setting choices on the left side.  
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 Diagram of inputs into OSAM. Figure 3. 

 

 

a. Beginning Inventory 

OSAM contains the current inventory of active duty commissioned Naval 

officers with the exception of Chief Warrant Officers. It includes officers in all 

designators and paygrades O1 to O6. Each of these officers represents an 

individual entity within the simulation, but no Personally Identifiable Information 

(PII) is contained in the data set. The beginning inventory is updated by 

refreshing the Access databases and cannot be changed from the scenario 

editor. 

b. Accessions 

Accessions in OSAM can occur based on a pre-established plan, 

produced externally and imported into the database. These plans specify how 

many officers to access into each community. Alternatively, the user can allow 

OSAM to determine the number of accession via the unconstrained and 
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constrained accessions options. The unconstrained accessions method 

calculates requirements for new accessions based on future requirements as 

projected from current inventory. Constrained accessions follow the same 

methodology, but prevent the addition of officers in excess of what OPA allows 

for the accessed paygrades and designators.  

c. Promotions 

OSAM can process promotions according to four different methods: 

promotion plan, promote-to-vacancy, promote-to-flowpoint, and auto-promote. 

The plan option is based on annually updated quotas of specific numbers of 

officers to promote in each community. The promote-to-vacancy option causes 

promotions to occur according to the number of losses that occur in the next 

higher paygrade, thus creating space for the lower-ranking officers to move into. 

The promote-to-flow-point option also tracks vacancies to manage promotions, 

but prevents officers from promoting earlier than what DOPMA allows. Along with 

the constraints in promote-to-flow-point, auto-promote restricts promotion 

opportunity to within DOPMA guidelines. 

d. Transfers 

Transfers between communities in OSAM occur according to prescribed 

plans developed outside the model. The scenario editor does not provide for 

changes to these plans and no other options are available. Transfer plans specify 

the number of in-quotas for receiving community designators and paygrades. 

Transfers out of communities follow a default system coded within OSAM that is 

based on historical distributions. 

e. Losses 

As discussed above, OSAM separately processes three types of losses: 

Natural, Force-Out, and User-Added losses. The user may adjust Natural losses 

by selecting different historical loss rate plans corresponding to varying levels of 

retention. Settings for Force-Out losses are not part of the scenario editor, but 
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the user may change the criteria by modifying the code. The Force-Shaping tab 

on the scenario editor allows the user to enter in additional, specific numbers of 

losses for selected groups of officers.  

G. RESULTS AND ANALYTICAL TOOLS 

The run time for a single simulation in OSAM depends on the length of the 

user-specified time horizon and the speed of the computer. A typical five-year 

scenario takes approximately ten minutes on current desktop computers. Once 

the simulation completes, OSAM closes Access and the results are stored in an 

output database. The package of software included with OSAM contains a 

Scenario Analysis Tool developed in Microsoft Excel that reads in the results and 

can create charts, graphs, and reports for multiple scenarios. The Scenario 

Analysis Tool is effective for comparing individual simulations, but does not have 

the capacity to analyze a large-scale experiment with multiple replications.  
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III. EXPERIMENT DESIGN AND IMPLEMENTATION 

This chapter discusses the use of Design of Experiments (DOE) to grow a 

dataset representing a broad range of scenarios. The process is analogous to 

farming: the seeds must be planted, the crops grow and are harvested, then the 

produce is cleaned, sorted, and turned into a finished product. In this study, data 

farming in OSAM begins with selecting the right factors and ranges, developing a 

design, and then making necessary arrangements to conduct the simulation. The 

SEED Center at the Naval Postgraduate School (https://harvest.nps.edu) 

provides the computing resources to run the experiment on a reasonable 

timeline. 

A. DESIGN OF EXPERIMENTS 

Applying DOE to simulations provides benefits that align with the purpose 

of OSAM and manpower planning in general. End-strength alone as a single 

number needs proper context to provide meaningful information to decision 

makers. DOE enables us to better understand the system in which those end-

strength numbers arise and to explore the effect of potential policy changes on 

those systems (Kleijnen et al., 2005). By running a set of scenarios that 

encompass a wide range of possibilities, we gain a better understanding of (1) 

the model, (2) the way end-strength responds to changes in the factors varied in 

the experiment, and (3) the variability inherent in the responses. Unlike with other 

uses of DOE, the intent of this study is not to find an optimal set of settings to 

achieve a certain result, but rather to determine what conditions, as simulated by 

varying the settings, produce results that may warrant changes to policy. This 

study seeks to identify the most severe retention outcomes and examine the 

causes behind those particular results. Forces driving poor retention may often 

lie outside the control of the Navy; thus in order to ameliorate the disadvantages 

of taking a reactive approach, identifying scenarios requiring varying degrees of 

intervention takes on critical importance.  
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B. FACTOR SELECTION 

In DOE terminology, the term “factor” refers to what may be called 

parameters, variables, or inputs for the model. The choice of factors for the 

design depends on the intent of the experiment and characteristics of the 

available factors in the model, and can also be constrained by the resources 

available to run the experiment (Kleijnen et al., 2005). Given the purpose of this 

study to exploit as fully as possible the mechanics of the model and explore 

retention, losses emerged as the primary category of inputs. Losses represent 

the most complex part of OSAM’s computations and they have the most 

significant impact on end-strength, which in turn provides metrics on retention. 

With three types of losses to choose from, the deciding considerations were ease 

of implementation and relationship to retention. User-Added losses provided the 

best choice to serve as factors in this experiment. The other two options, Natural 

Losses and Force-Outs, require manipulation of the tables within the OSAM 

database and changes to the code to allow the variations in a designed 

experiment. Changing historical loss rates that govern natural losses or changing 

criteria for Force-Outs also do not reflect a close relationship with retention. 

Historical loss rates account for a variety of influences that affect retention, so it 

would be difficult to determine what proportion is steady-state attrition and what 

proportion is caused by a changing retention environment. This confounding of 

effects would also hinder determining a valid range of values to build the design. 

While it would be possible to incorporate additional inputs such as 

promotions and accessions into the design, given the limited group of officers 

comprising the subject of this study, these other inputs would likely not provide 

additional insight. At paygrades O3 and above and for simulation time-horizons 

on the order of five years, accessions have little impact. Promotion settings do 

affect the simulation in this case; however, rules and policies already constrain 

promotions to such a narrow range of effects that varying them would provide 

comparatively little benefit. As layed out in Table 1, the design consists of 27 

factors, the number of forced losses per paygrade per designator per year. 
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Values for O5 and O6 are combined to reduce the size of the design to make it 

more manageable. 

Table 1.   List of factors used to build design.  

 
Factors are number of forced losses for each paygrade, designator, and fiscal 
year, for three years in the simulation. 

The next step in the design development consists of determining an 

appropriate range of values for each factor. Guidance on what constitutes poor 

retention typically contains only qualitative descriptions, thus introducing a 

degree of subjectivity into the design. This study defines poor retention as 2 to 10 

percent of additional attrition beyond historical losses. Using this definition, 

specific numbers of losses corresponding to those rates are calculated based on 

current inventories for each designator and paygrade combination. As 

summarized in Table 2, the 2 and 10 percent values represent the range of 

forced losses for each factor. These values are intended to represent mild to 

severe degrees of poor retention. 
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Table 2.   Range of forced losses calculated as a percentage of 
inventory. 

 
 

C. DESIGN SELECTION 

The same set of considerations that guide factor selection also help in 

selecting an appropriate design. A number of choices along a spectrum of 

complexity give the designer flexibility in the approach, although time and 

computing resource remain a constraint (Kleijnen at al., 2005). The large number 

of factors in this study and wide range of values mean gridded designs would not 

prove effective. Only a coarse grid may be possible in this case, which would not 

provide sufficient depth of coverage of the response surface. A fine grid would 

not be practicable due to the size of the factor space. Latin hypercubes emerge 

as the best candidate since they provide an excellent compromise between 

resolution and efficiency. A distinguishing feature of Latin hypercubes is their 

space-filling property, which scatters the design points throughout the design 

space to efficiently capture as much of the possible range of scenarios as 

possible. These designs are well suited to studies in which gaining a better 

understanding of the response surface is a primary goal (Sanchez & Wan, 2012). 

Designator Grade Count 10% 6% 2%
3 2592 259 156 52
4 1105 111 66 22
5 879 88 53 18
6 414 41 25 8
3 1180 118 71 24
4 542 54 33 11
5 313 31 19 6
6 225 23 14 5
3 3379 338 203 68
4 1559 156 94 31
5 1107 111 66 22
6 405 41 24 8
3 1152 115 69 23
4 721 72 43 14
5 515 52 31 10
6 213 21 13 4

1110

1120

1310

1320

Losses
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Further efficiency and improved space filling properties can be gained by using a 

nearly orthogonal Latin hypercube (NOLH) design (Cioppa and Lucas, 2007).  

After selecting NOLH as the design, the factors and range of values go 

into a design blueprint available for download from the SEED Center website 

(https://harvest.nps.edu/software.html). The blueprint calculates the factor values 

for each design point. With 27 factors, the NOLH design totaled 257 design 

points and still fills the design space quite well. Figure 4 provides a scatterplot 

matrix for just a portion of the factors and demonstrates the comprehensive 

coverage.  

 Scatterplot matrix for NOLH design using six out of 27 factors. Figure 4. 
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D. IMPLEMENTATION 

Since OSAM does not have an organic capability to run multiple 

simulation runs successively, additional preparation was necessary to create the 

ability to run an experiment with multiple design points and replications. Software 

developed by Steve Upton from the SEED Center as part of this study can create 

designs based on user input, translate the design into OSAM input, and run the 

design in OSAM on a computer cluster. 

1. OSAMFarmer 

Once a user has selected a design and decided which factors to use, a 

user can run OSAMFarmer to draft the design. The program will vary the inputs 

to create the design points and will build all the necessary initialization files that 

OSAM uses to adjust the scenario settings for the simulation. In this study, since 

the design used an existing NOLH blueprint, running OSAMFarmer was not 

required. An additional script written in R translated the design from the NOLH 

spreadsheet into initialization files for OSAM. 

2. OSAMRunner 

The ability to run a series of simulations in OSAM without user intervention 

adds immense capability to the model. It allows a user to run large experiments, 

to replicate simulations with different random seeds to determine stochastic 

variation, or to automate the running of a list of scenarios not necessarily 

organized under a design framework. OSAMRunner, an executable program 

written in C++, replaces the scenario editor and allows running of OSAM from a 

command line interface. Once initialization files are placed in the correct location 

and random seeds are set, a multiscenario design can be run without 

interruption. Since each experiment still runs separately, multiple design points 

may be executed simultaneously, thus taking advantage of parallel processing 

capabilities with cluster computing.  
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3. Base Case 

In addition to the 257 design points of the experimental design, this study 

also includes a single scenario to serve as a baseline for comparison experiment 

results. The base case contains the same parameters as the design points, but 

without the additional forced losses during the first three years of the simulation. 

These parameters include the 2014 accession and transfer plans, 2014 historical 

loss rates, and promotions by auto-promote. The auto-promote option sets 

promotion opportunity rates to follow predicted vacancies and DOPMA 

regulations on flow points representing years of commissioned service. To 

explore the stochastic variation more deeply, we replicate the base case scenario 

100 times compared to ten replications for the remaining design points. 
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IV. RESULTS AND ANALYSIS 

This chapter contains a description of the results obtained from applying 

data farming to OSAM, analysis of those results, and metamodeling of the 

underlying systems. After assessing the degree of stochastic variation in the 

simulation, the averages of the replications are used as observations to build a 

set of linear regression models. 

A. ANALYTICAL TOOLS 

Organization of the data and analysis were completed using JMP Pro 

Version 10.0.0 and R version 3.2.0 (JMP Pro, 2013; R Core Team, 2015. Using 

filtering tools in JMP, we created data tables from the initial output. The data 

tables were loaded into R for various exploratory analyses and initial models. We 

used JMP to create the final models to take advantage of the graphical tools 

offered by the software. 

B. OVERVIEW OF RESULTS 

Using SEED Center cluster computers, the experiment took 30.6 hours to 

complete (S. Upton, personal communication, July 30, 2015). The initial output 

file from the simulation runs contains over 700 megabytes of data. These data 

included end-strength projections for all 68 designators for up to six paygrades 

over six fiscal years producing a total of 5,162,990 observations given the 257 

design points and ten replications per design. In JMP, the data are pared down to 

only the four designators of interest in this study, 111X Surface Warfare, 1120X 

Submarine Warfare, 1310 Aviation Warfare-Pilot, and 1320 Aviation Warfare-

Naval Flight Officer (NFO).  

C. STOCHASTIC VARIATION 

OSAM produces only a small amount of stochastic variation in the results. 

Across all design points and the base case, the results contained an almost 

negligible amount of variation across replications. After 100 replications of the 
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base-case scenario, the results for total end-strength of the URL communities 

examined in this study remain tightly clustered. Summary statistics for these 

replications are provided in Table 3. Stochastic variation across the ten 

replications of the design points similarly remained very low. From the plots of 

end-strengths for a representative sample of design points and officers groups, 

given in Figures 5 through 8, the results stay consistent across the replications 

represented by individual lines in the plots. Variance appears to increase slightly 

in later years in the simulation. 

Table 3.   Summary statistics of 100 replications of base case 
scenario, by fiscal year. 

 

 Line graph of end-Figure 5. 
strength for O3 Submarine 
Officers for design point 1. 

 

 

 Line graph of end-strength Figure 6. 
for O4 SWOs for design point 20. 

 

 

 
 

2015 2016 2017 2018 2019 2020
Minimum 22880 23080 23270 23510 23670 23770
1st Quartile 22890 23110 23320 23540 23720 23830
Median 22890 23120 23330 233550 23740 23850
Mean 22890 23120 23330 23550 23740 23840
3rd Quartile 22890 23130 23350 23570 23750 23860
Maximum 22900 23160 23390 23580 23790 23900
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 Line graph of end-Figure 7. 
strength for O5 NFOs for 

design point 100. 

 

 Line graph of end-strength Figure 8. 
for O6 Pilots for design point 200. 

 

D. DESCRIPTIVE STATISTICS  

OSAM produces several pieces of data such as numbers of losses and 

transfers during the course of a simulation run, but since it is an inventory 

projection model, the end-strength represents the end-product of the separate 

calculations.   

The multidimensional aspect of the inputs creates a dataset with a 

corresponding degree of complexity. Although some insights may be gained by 

analyzing the entire officer corps as a whole, this study focuses on specific 

communities, identified by designator and paygrade, to determine the effects of 

losses on retention. Since we do not know beforehand how the response may 

vary across groups, we first examine each group’s results separately. Appendix 

A contains box plots of the end-strengths for all sixteen groups. See Figure 9 

below for explanation of how the descriptive statistics are arranged in a box plot.  
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 Explanation of box plot structure (T. Lucas, personal Figure 9. 
communication, 2014). 

 

From these plots, we identify some patterns that remain consistent across 

all paygrades. Box plots of the summarized end-strengths by paygrade in Figures 

10 through 13 by paygrade show how the variance changes by fiscal year, and 

the trends in end-strength changes. In each plot, the results for the first year of 

results shows very little variance. A possible explanation could be that the forced 

losses introduced in the design have not yet had a chance to exert a strong 

influence on end-strength. The promotion policies in place to manage inventory 

may create a system that is robust enough to cope with the smaller number of 

forced losses introduced for just one year. By the following year, a clear effect is 

evident both in the lower end-strength and variation of the results. 

 Box plot of O3 end-Figure 10. 
strength. 

 

 Box plot of O4 end-Figure 11. 
strength. 
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 Box plot of O5 end-Figure 12. 
strength. 

 Box plot of O6 end-Figure 13. 
strength. 

For junior and mid-grade officers (O3 and O4), the range variance 

appears to increase through 2018 and then remain stable through the remaining 

two years. For senior officers (O5 and O6), the variation peaks in 2018 and then 

decreases slightly. The end-strength for O3s displays the most resilience. 

Although the forced losses cause a significant decrease of over 700 officers, the 

end-strength quickly recovers once the additional losses end. Within two years 

after reaching minimum, average O3 end-strength is close to the 2015 value. O4, 

O5, and O6 end-strengths appear much less resistant to the simulation period of 

poor retention. End-strength in these paygrades increases only slightly, if at all, 

through the remaining years in the simulation. 

E. RESPONSE VARIABLES 

As the response variable of interest in this study, the end-strength must 

have a frame of reference to give meaning to any metamodels. To gauge the 

effect of poor retention on the health of the force, we compare the results of the 

designed experiment with the base case. End-strengths from the experiment 
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represent the whole landscape of poor retention scenarios while the base case 

represents an unaffected scenario. In analyzing the results, we use the deviation 

of end-strength from the base case value as the response variable. Within the 

data table containing the results, these values are calculated by subtracting the 

design point end-strength from the corresponding base case end-strength for 

each fiscal year, paygrade, and designator combination. Design point and base 

case values for these calculates are the averages across the replications. 

Positive values in the deviation indicate that the design point end-strength is less 

than the respective base case value. Table 4 provides a summary of the means 

and standard deviations for each group for the three fiscal years that make up 

the post-poor retention period.  

Table 4.   Descriptive statistics of deviation from end-strength. 

 

Means and standard deviations of the response variable used to build 
metamodels: the deviance of the design point end-strength from the base case 
end-strength. 

Grade Designator Mean
Std. 
Dev.

Mean
Std. 
Dev.

Mean
Std. 
Dev.

SWO 943 74 1041 58 1095 46
SUB 430 33 465 25 475 16

PILOT 948 103 901 87 824 76
NFO 332 45 337 32 325 25
SWO 104 41 92 45 94 53
SUB 62 21 85 23 69 26

PILOT 181 56 161 56 153 51
NFO 92 21 58 19 25 18
SWO 146 33 122 30 97 31
SUB 37 13 11 13 26 13

PILOT 52 40 65 35 48 35
NFO 41 19 42 17 58 15
SWO 30 18 18 20 -2 19
SUB 4 10 0 9 -8 9

PILOT 82 17 66 18 83 15
NFO 12 9 10 8 9 8

O5

O6

2018 2019 2020

O3

O4



 35

Over the three years, means both increase and decrease by varying degrees for 

different officer groups. No clear trends or patterns emerge for how much the 

simulation varied from the base case when broken down by paygrade and 

designator. With a few exceptions, however, the standard deviations show a 

consistent decreasing trend. 

1. Distribution of the Response Variable 

Examining the distribution of the response may reveal further insights into 

potential central tendency. We classify the distribution based on the histograms 

provided in Figures 14 and 15. These histograms represent end-strengths 

summed across the four paygrades and four designators for their respective 

fiscal years. Histograms of end-strengths for individual officer groups displayed 

similar shapes. The distributions of outcomes appears to be roughly normal. 

Distinct peaks in both histograms represent some deviation from a smooth 

normal curve. 

 Histogram of 2018 Figure 14. 
end-strengths across all 

paygrades and designators. 

 

 

 Histogram of 2020 Figure 15. 
end-strengths across all 

paygrades and designators. 
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2. Correlation between Officer Groups 

Given that the response variable, deviation of the design point end- 

strength from the base-case end-strength, can be broken down by paygrade, 

designator, and fiscal year, we may consider using multivariate multiple 

regression instead of having multiple linear regression models. Multivariate 

multiple regression provides advantages when the responses are highly 

correlated. The pairwise plots of the Pilot and NFO end-strengths in Figure 16 

show a high degree of correlation. The likely reason for this result is the 

treatment of Pilots and NFOs as one group in the experimental design. Forced 

losses were applied evenly to all aviators. As evident in the plots in Figure 17, 

SWO and Submarine officer results did not exhibit correlation between each 

other, nor when compared to aviation officers. 

 Scatterplot of Pilot and NFO end-strengths. Figure 16. 
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 Scatterplot of SWO, Submarine Officer, and Pilot end-Figure 17. 
strengths. 

 

 

F. METAMODELS 

To the manpower planner attempting to forecast end-strength based on 

loss data, having a valid model of the relationship between loss and end-strength 

is a critical component of the analysis. Multiple options exist for model types and 

even more choices come with the decisions on how to build the model. 

Consequently, the scope of possibilities for how to model the relationship 

between end-strength and losses presents another opportunity for structured 

quantitative analysis to assist in the process. In this section, we present a few 

candidate models that attempt to maximize accuracy and usefulness to the 

planner. Observations are organized into the 27 predictor variables listed in 

Table 5. Each variable represents the amount of forced losses for different 

groups in each year of the three-year period of poor retention. O5 and O6 losses 

were combined in the design, as were losses Pilots and NFOs.  
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Table 5.   List of 27 predictor variables in dataset. 

 

1. Multivariate Analysis 

Experiments with more than one response variable may be analyzed 

using multivariate methods that build multiple models simultaneously. Although 

such methods may apply to this study, we build separate linear models for each 

response to reflect the paygrade- and designator-specific approach to manpower 

planning used by the Navy.   

2. Multivariate Regression Models Based on One Year Loss Data 

A model that could detect leading indicators of a poor retention trend 

would have significant value to planners. Reasonably accurate projections of 

end-strength based on one year of loss data and assumptions about the 

retention trend, would allow planners to take a proactive approach to the 

problem. Taking the numbers of forced losses for the first year of the simulation, 

we attempt to build linear models with end-strength of the fourth year, 2018, as 

the response. These models require an assumption that the poor retention period 

will last three years. The linear models were built in using the lm() function in R 

with 16 models total, one for each paygrade and designator combination. To 

keep the models as simple as possible, stepwise regression was performed 

using the stepAIC() function from the MASS package (Venables and Ripley, 

2002). This function removes unnecessary terms from the model based on the 

Aikaike Information Criterion (AIC) to assess candidate models. The R-squared 

SWO_O3_y1 SUB_O3_y1 AV_O3_y1
SWO_O3_y2 SUB_O3_y2 AV_O3_y2
SWO_O3_y3 SUB_O3_y3 AV_O3_y3
SWO_O4_y1 SUB_O4_y1 AV_O4_y1
SWO_O4_y2 SUB_O4_y2 AV_O4_y2
SWO_O4_y3 SUB_O4_y3 AV_O4_y3
SWO_O5O6_y1 SUB_O5O6_y1 AV_O5O6_y1
SWO_O5O6_y2 SUB_O5O6_y2 AV_O5O6_y2
SWO_O5O6_y3 SUB_O5O6_y3 AV_O5O6_y3

Predictor Variables
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values, summarized in Table 6, show that these models perform very poorly; 

therefore further analysis was conducted. For a full explanation of linear models, 

Faraway’s text (2005) provides a useful reference. 

Table 6.   R-squared of end-strength projection models based on one 
year of loss data. 

 

 
 

3. Multivariate Regression Models Based on Three Years of Loss 
Data 

Using all three years of the forced losses makes the maximum number of 

predictor variables available to the model. For the response variable, we use the 

2020 end-strength. The validity of this structure depends on the assumption that 

the poor retention period lasts three years followed by three years of losses in 

line with historical rates. Although a user would not be able to predict with 

certainty when the poor retention period may end, planners could use models of 

this type to conduct what-if analyses with a three-year time horizon.   

Since officer inventory is managed by community and policies are often 

applied differently by paygrade, we create one model for each paygrade and 

Grade Designator R2

SWO 0.162
SUB 0.119
PILOT 0.240
NFO 0.319
SWO 0.301
SUB 0.421
PILOT 0.250
NFO 0.276
SWO 0.295
SUB 0.273
PILOT 0.175
NFO 0.245
SWO 0.187
SUB 0.135
PILOT 0.227
NFO 0.197

O3

O4

O5

O6
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designator combination. Out of these 16 models, we present the results of a 

representative sample of four models representing each paygrade and 

designator. More comprehensive results are provided in Appendix B. The four 

groups presented here are Submarine Warfare O3s, SWO O4s, Pilot O5s, and 

NFO O6s. 

A common approach to building linear models is to start with a wide scope 

and include all predictor variables as well as possible interaction and nonlinear 

terms (Crawley, 2013). In this study, initial models include all main effects 

consisting of the 27 loss data variables and all two-way interactions. Following 

the principle of parsimony, we use stepwise regression to eliminate unnecessary 

terms. Using the Stepwise Regression Control option in JMP, we select P-value 

Threshold as the stopping rule with a p-value of 0.01 for both the probability-to-

enter and probability-to-leave criteria. 

To ensure that the models are not overfit we assess how well each model 

performs with new data. We randomly partition the data into training and test sets 

that represent 80% and 20% of the data, respectively. Using a model built with 

only the training set, we compare the predicted values based on the data in the 

test set with the actual values for those observations. 

a. Submarine Warfare Officers - O3 

The initial model produced in JMP using all the data and the standardized 

approach contained 14 predictor variables and had an R2 of 0.969. This model 

contained all nine loss variables for O3s plus two aviation loss variables for O4 

and two SWO and aviation interaction terms. The aviation and interaction terms 

had coefficients of two to three orders of magnitude smaller values than the O3 

terms, and had higher p-values. After accounting for the difference in units 

between the coefficients, we conclude that the interaction terms do not add value 

to the model and exclude them from the final model summarized in Table 7. 
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Table 7.   Parameter estimates for 2020 end-strength of O3 Submarine 
Officers. 

 

The R2 of 0.964 shows that the model is highly accurate. Based on the 

size of the coefficients, the O3 Submarine Officer losses in years two and three 

have the largest effect on 2020 end-strength. A model built with only those two 

predictors had a R2 of 0.698, indicating that the SWO and aviation losses still 

have a significant effect. 

Diagnostic plots of the models indicate that key modelling assumptions 

are met. The residuals versus predicted plot in Figure 18 has a homoscedastic 

pattern and the normal Quantile-Quantile (Q-Q) plot in Figure 19 shows that the 

residuals have an approximately normal distribution. 

Term Estimate Std Error t Ratio Prob (> |t|)
Intercept 1406.379 1.544 910.7 <0.001
SWO_O3_y1 -0.044 0.003 -13.63 <0.001
SWO_O3_y2 -0.036 0.003 -11.16 <0.001
SWO_O3_y3 -0.036 0.003 -11.17 <0.001
SUB_O3_y1 -0.38 0.007 -5.34 <0.001
SUB_O3_y2 -0.233 0.007 -32.98 <0.001
SUB_O3_y3 -0.433 0.007 -61.19 <0.001
AV_O3_y1 -0.041 0.002 -22.05 <0.001
AV_O3_y2 -0.04 0.002 -21.21 <0.001
AV_O3_y3 -0.04 0.002 -21.03 <0.001
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 Residuals versus Figure 18. 
predicted values of linear 
model for O3 Submarine 

Officers. 

 

 Normal Q-Q plot Figure 19. 
of the residuals for O3 

Submarine Officer 
model. 

 

 

Although the final model eliminates unnecessary terms, the high R2 

indicates that the model could be overfit. We rebuild the model using only the 

training set and compare the predicted results with the actual values from the test 

set observations. The plot of actual versus predicted values, provided in Figure 

20, shows a diagonal linear shape indicative of fairly accurate performance. 
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 Actual versus predicted plot for test data set using O3 Figure 20. 
Submarine Officer model. 

 
 

b. Surface Warfare Officers – O4 

For O4 SWOs, a stepwise regression model of all main effects and two 

way interactions produced a model with 26 predictor variables with 18 main effect 

variables for O3s and O4s and eight interaction terms, four of which involved only 

aviation groups. This model has an R2 of 0.984. We remove the interactions 

terms since they contribute very little to the model based on the small 

coefficients. Our final model still maintains a high R2 of 0.971. SWO O3 and 

SWO O4 variables have the greatest influence. A model built with only O4 losses 

for all designators has an R2 of 0.247 and a model built with only SWO losses for 

O3 and O4 has an R2 of 0.545. Parameter coefficients and their p-values of the 

final model are provided in Table 8. 
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Table 8.   Parameter estimates for 2020 end-strength of O4 SWOs. 

 

In verifying the model assumptions, the residual versus predicted plot in 

Figure 21 of the residuals versus predicted values shows a homoscedastic 

pattern and the normal Q-Q plot in Figure 22 indicates that the residuals have a 

somewhat skewed, but still roughly normal, distribution. A plot of predicted 

versus actual values for the test set in Figure 23 indicates good performance for 

new data. 

  

Term Estimate Std Error t Ratio Prob (> |t|)
Intercept 1209.257 6.532 185.13 < 0.0001
SWO_O3_y1 -0.347 0.01 -35.33 < 0.0001
SWO_O3_y2 -0.353 0.01 -35.99 < 0.0001
SWO_O3_y3 -0.284 0.01 -28.97 < 0.0001
SWO_O4_y1 -0.331 0.023 -14.46 < 0.0001
SWO_O4_y2 -0.403 0.023 -17.59 < 0.0001
SWO_O4_y3 -0.52 0.023 -22.68 < 0.0001
SUB_O3_y1 0.149 0.021 6.99 < 0.0001
SUB_O3_y2 0.152 0.021 7.16 < 0.0001
SUB_O3_y3 0.128 0.021 6.06 < 0.0001
SUB_O4_y1 -0.159 0.048 -3.35 0.0001
SUB_O4_y2 -0.138 0.048 -2.91 0.004
SUB_O4_y3 -0.156 0.048 -3.29 0.001
AV_O3_y1 0.146 0.006 25.97 < 0.0001
AV_O3_y2 0.175 0.006 31.03 < 0.0001
AV_O3_y3 0.152 0.006 26.95 < 0.0001
AV_O4_y1 -0.19 0.011 -17.09 < 0.0001
AV_O4_y2 -0.224 0.011 -20.14 < 0.0001
AV_O4_y3 -0.173 0.011 -15.53 < 0.0001
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 Residuals versus Figure 21. 
predicted values of linear 

model for O4 SWOs. 

 

 Normal Q-Q plot Figure 22. 
of the residuals for O4 

SWOs. 

 

 Actual versus predicted plot for test set using O4 SWO model. Figure 23. 
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c. Pilots – O5 

The initial stepwise regression model for O5 pilots contains 23 terms, 

including 20 main effects variables and three interactions terms, and has an R2 of 

0.980. The inclusion of interaction terms in the regression process yields very 

little benefit. Rerunning the stepwise regression with only main effects produces 

a model with 18 variables and an R2 of 0.974. Table 9 contains a summary of 

parameters for the final model. 

Table 9.   Parameter estimates for 2020 end-strength of O5 Pilots. 

 

 

Diagnostic plots confirm that basic modelling assumptions are met. The 

plot of residuals versus predicted values in Figure 24 shows homoscedasticity 

and the normal Q-Q plot in Figure 25 shows that the residuals are normally 

distributed. The model performs well in predicting results for the test set data as 

demonstrated by the diagonal linear shape in the plot of actual versus predicted 

values in Figure 26. 

Term Estimate Std Error t Ratio Prob (> |t|)
Intercept 1283.657 4.039 317.78 < 0.0001
SWO_O3_y1 0.016 0.006 2.66 < 0.0001
SWO_O4_y1 0.116 0.014 8.15 < 0.0001
SWO_O4_y2 0.152 0.014 10.75 < 0.0001
SWO_O4_y3 0.159 0.014 11.22 < 0.0001
SWO_O5O6_y1 -0.086 0.012 -7.02 < 0.0001
SWO_O5O6_y2 -0.115 0.012 -9.39 < 0.0001
SWO_O5O6_y3 -0.103 0.012 -8.4 < 0.0001
SUB_O4_y2 0.156 0.029 5.3 < 0.0001
SUB_O4_y3 0.116 0.029 3.96 < 0.0001
SUB_O5O6_y1 -0.083 0.029 -2.81 0.005
SUB_O5O6_y2 -0.093 0.029 -3.17 0.002
AV_O3_y1 -0.034 0.003 -9.76 < 0.0001
AV_O4_y1 -0.162 0.007 -23.47 < 0.0001
AV_O4_y2 -0.231 0.007 -33.55 < 0.0001
AV_O4_y3 -0.211 0.007 -30.57 < 0.0001
AV_O5O6_y1 -0.273 0.007 -39.17 < 0.0001
AV_O5O6_y2 -0.3 0.007 -43.08 < 0.0001
AV_O5O6_y3 -0.33 0.007 -47.37 < 0.0001
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 Residuals versus Figure 24. 
predicted values of linear 

model for O5 Pilots. 

 

 

 Normal Q-Q plot of Figure 25. 
the residuals for O5 Pilots. 

 

 Actual versus predicted plot for test set using O5 Pilot model. Figure 26. 
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d. Naval Flight Officers – O6 

Stepwise regression for the NFO O6 data did not include any interaction 

terms under the criteria used. The model used only the O5-O6 loss data with the 

addition of the aviation O4 losses for the first year. The final model had eight 

variables and an R2 of 0.900, summarized in Table 10. The lower accuracy of the 

model may partly be due to the smaller population size of the officer group 

compared to groups in other paygrades and designators. 

Table 10.   Parameter estimates for 2020 end-strength of O6 NFOs 

 
 

The diagnostic plots in Figures 27 and 28 verify agreement with modelling 

assumption as seen in the other models. The plot of actual versus predicted 

values for test set data in Figure 29 exhibits linear behavior, although the 

performance does not appear as strong as compared to previous models. This 

result is consistent with the lower R2. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Term Estimate Std Error t Ratio Prob (> |t|)
Intercept 211.648 1.134 86.59 < 0.0001
SWO_O5O6_y1 0.033 0.005 6.31 < 0.0001
SWO_O5O6_y2 0.04 0.005 7.67 < 0.0001
SWO_O5O6_y3 0.034 0.005 6.6 < 0.0001
SUB_O5O6_y1 0.037 0.012 3.02 0.003
AV_O4_y1 -0.008 0.003 -2.81 0.005
AV_O5O6_y1 -0.061 0.003 -20.79 < 0.0001
AV_O5O6_y2 -0.079 0.003 -27.01 < 0.0001
AV_O5O6_y3 -0.089 0.003 -30.18 < 0.0001
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 Residuals versus Figure 27. 
predicted values of linear 

model for O6 NFOs. 

 

 Normal Q-Q plot of Figure 28. 
the residuals for O6 

NFOs. 

 Actual versus predicted plot for test set using O6 NFO model Figure 29. 
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V. CONCLUSIONS 

A. ANSWERS TO RESEARCH QUESTIONS 

1. Under What Conditions Do Officer Communities Experience 
Retention Problems? 

The intent of this study is to provide a quantitative answer to this research 

question. As a reflection of how resilient officer communities may be to poor 

retention, the key issue is how many additional losses a particular group can 

sustain without severely degrading the long-term health of the inventory. 

Although temporary drops in inventory caused by a single year of high losses are 

acceptable provided that the community can recover, an end-strength reduction 

that persists more than two years can negatively impact readiness.     

The results shown in the boxplots in Chapter IV and Appendix A show that 

some communities weather the poor retention better than others in the model. 

The complexity of the models indicates that outcomes depend not just on the 

losses occurring within the specific paygrades and designators, but also on the 

losses in other communities as well. For O4 SWOs, the end-strength after the 

six-year period of the simulation cannot be predicted based only on the additional 

losses experienced by SWOs only or O4s only. An accurate prediction depends 

on losses experienced by other communities as well. In this respect, models built 

using a complete representation of response surface can assist. The plots of 

SWO O4 end-strength in 2020 versus the forced losses in each year, provided in 

Figures 30 through 32 show that no single factor can reliably predict the 

outcome. In building the linear models, R2 for individual groups decreased when 

removing variables for other groups, suggesting that the whole URL community 

must be considered when analyzing losses. The variation of models and results 

across the different officer groups make it difficult to identify precise conditions 

for a retention problem. The linear models built in Chapter IV provide an 

informative starting point when analyzing officer groups individually. 
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 Plot of SWO O4 end-Figure 30. 
strength versus year one 

losses. 

 

 Plot of SWO O4 end-Figure 31. 
strength versus year two 

losses. 

 

 Plot of SWO O4 end-strength versus year three losses. Figure 32. 

 

 

2. What Is the Impact of a Sustained Period of Poor Retention? 

Individual groups reacted differently in the experiment. Overall, URL O3s 

recovered well from the losses within three years of the end of the poor retention 

period. Even under a worst-case scenario of high losses in each year, with a 7 

percent total loss by year six, the end-strengths still follow a upward trend that 
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suggest full recovery within one or two years. The losses sustained for O4s made 

a strong impact, which made it difficult for the group to recover after the period of 

losses ended. After a decline of approximately 14 percent, O4 end-strength 

remained steady at the reduced level for the remainder of the simulation. O5 and 

O6 officers suffered similar declines and fail to rebound by end of 2020.   

3. How Much Does the Response Vary? 

Variation in OSAM covers two areas: stochastic variation for a particular 

scenario and the variation of outcomes based on an experimental design. 

Stochastically, OSAM produces little variation when multiple replications are run 

with random seeds. The consistency of output justifies the current practice of 

using one replication per scenario.  

Using the space-filing NOLH as the experimental design created a wide 

range of scenarios to run in OSAM. The corresponding outputs vary significantly 

as well, but still within reasonable ranges given the context. Differences in results 

between design points tend to fall within a range equal to approximately 10 

percent of the end-strength. 

B. RECOMMENDATION FOR FUTURE STUDY 

The primary benefit of this study is that it provides the tools to conduct 

further data farming experiments in OSAM. Varying forced losses across three 

years for a particular set of officer groups represents just one of many possible 

applications. With the OSAMFarmer and OSAMRunner programs, users can 

expand on the scenario presented in this study and build new designs to explore 

other aspects of end-strength management beyond retention. To continue the 

experiments used here, we recommend running additional simulations that 

expand the parameters of the period of poor retention. Instead of having a 

standardized three-year period, further experiments could lengthen and shorten 

the period, and incorporate buildup and slowdown phases. Additional designators 

and groups of officers should also be studied to compare the impact of additional 
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losses between communities. Varying other model inputs, such as promotions, 

transfer, and historical loss rates, may also yield further insight.  
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APPENDIX A.  BOX PLOTS OF ALL DESIGNATORS AND 
PAYGRADES 
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APPENDIX B.  SUMMARIES OF REMAINING LINEAR 
REGRESSION MODELS 

SWO O3 

 

SWO O5
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SWO O6 

 

Submarine Officer O4 
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Submarine Officer O5 Submarine Officer O6 

 
Pilot O3 

 
Pilot O4 
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Pilot O6 NFO O3 

 
NFO O4 

 
NFO O5 
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